理论概念
# 任务性质类型
# CPU密集型(CPU-bound)
CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高。
在多重程序系统中,大部份时间用来做计算、逻辑判断等CPU动作的程序称之CPU bound。例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中绝大部份时间用在三角函数和开根号的计算,便是属于CPU bound的程序。
CPU bound的程序一般而言CPU占用率相当高。这可能是因为任务本身不太需要访问I/O设备,也可能是因为程序是多线程实现因此屏蔽掉了等待I/O的时间。
线程数一般设置为:
线程数 = CPU核数+1 (现代CPU支持超线程)
# IO密集型(I/O bound)
IO密集型指的是系统的CPU性能相对硬盘、内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O (硬盘/内存) 的读/写操作,此时CPU Loading并不高。
I/O bound的程序一般在达到性能极限时,CPU占用率仍然较低。这可能是因为任务本身需要大量I/O操作,而pipeline做得不是很好,没有充分利用处理器能力。
线程数一般设置为:
线程数 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
# CPU密集型 vs IO密集型
我们可以把任务分为计算密集型和IO密集型。
计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。
第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。
IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
# 面向对象设计原则
# 开闭原则
对扩展开放,对修改关闭。 极端要求就是:程序完成后,除非是修改错误,不然不能修改代码,只能扩展代码。
# 依赖导致原则
调用者(客户代码)不依赖于被调用者(实现代码)的实现细节,而是依赖其抽象 调用者不依赖被调用者的具体实现,而是依赖被调用者的抽象,这样被调用者后续可以被无感替换掉。
# 单一职责原则
一个类,最好只做一件事,只有一个引起它的变化。
# 接口隔离原则
使用多个小的专门的接口,而不要使用一个大的总接口。
# 最少知道原则
一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。
# 合成复用原则
原则是尽量使用合成/聚合的方式,而不是使用继承。
# 里氏替换原则
子类必须能够替换其基类。 类B继承类A时,除添加新的方法完成新增功能P2外,尽量不要重写父类A的方法,也尽量不要重载父类A的方法。